
Physical Addressing on Real Hardware in Isabelle/HOL

Reto Achermann, Lukas Humbel, David Cock, and Timothy Roscoe

Department of Computer Science, ETH Zurich

Abstract. Modern computing platforms are inherently complex and diverse: a
heterogeneous collection of cores, interconnects, programmable memory transla-
tion units, and devices means that there is no single physical address space, and
each core or DMA device may see other devices at different physical addresses.
This is a problem because correct operation of system software relies on correct
configuration of these interconnects, and current operating systems (and asso-
ciated formal specifications) make assumptions about global physical addresses
which do not hold. We present a formal model in Isabelle/HOL to express this
complex addressing hardware that captures the intricacies of different real plat-
forms or Systems-on-Chip (SoCs), and demonstrate its expressivity by showing,
as an example, the impossibility of correctly configuring a MIPS R4600 TLB
as specified in its documentation. Such a model not only facilitates proofs about
hardware, but is used to generate correct code at compile time and device config-
uration at runtime in the Barrelfish research OS.

1 Introduction

The underlying models of system hardware used by both widely-used operating sys-
tems like Linux and verified kernels like seL4 [15] or CertiKOS [12] are highly over-
simplified. This leads to both sub-optimal design choices and flawed assumptions on
which correctness proofs are then based. Both of these systems treat memory as a flat
array of bytes, and model translation units (MMUs) in a limited fashion, if at all. This
model of the machine dates to the earliest verified-systems projects (and earlier), and
does not reflect the reality of modern hardware, in particular systems-on-chip (SoCs)
and expansion busses such as PCI.

Early verified CPUs such as CLI’s FM9001 [7] do not include anything beyond what
would today be described as the CPU core. The later Verisoft VAMP [6] added a cache,
but was still extremely simple, even compared to a mobile phone processor of the same
era. None of these models attempted to capture the complexity of, for example, the
PCI bus, or a multiprocessor NUMA interconnect: both already commonplace by that
time. Modern instruction-set models, such as the HOL4 ARM model [10] or the ARM
machine-readable specification [19] provide an excellent reference for reasoning about
the behaviour of software, but say nothing about the complex interconnects in modern
SoCs (which now include essentially all processor chips). No industrial projects [13]
appear to claim to have tackled this area.

The weak memory modeling work of Sewell et. al. [4,9], goes deepest, defining
the software-visible semantics of memory operations including the effects of pipelining
and reordering (e.g. write buffers), but nevertheless only gets us as far as the last-level

2x
HS-MMC

Cortex M3- subsystem
Display subsystem

IVAHD
1080p

subsystemABE subsystem

HS USB OTG

GPMC

NAND/NOR/
PSRAM
controller

System DMA
32 channels
127 requests

USB 2.0
controller

ULPI
wrapper

64 bits

L
4_

C
F
G

 in
te

rc
o
n
n
ec

t

L
4_

W
K

U
P

in
te

rc
o
n
n
ec

t

L
4_

P
E
R

 in
te

rc
o
n
n
ec

t

4 x 32 bits

DSP subsystem ISS

- GPTIMER
- GPIO
- TIMER
- SCRM
32K

- TIMERWD
- odule
- SAR RAM (KB 32 bit data)
General Wakeup Control m

8 -

PL310 L2 controller +
SCU
L2 :
ROM: 48KB

: 1 req

cache
+ MA +CMU

cache 1MB

GIC 28 .

C64+(4 issues)
Core: 32 b fixed pts.- it

L1: 32KB cache
L2: 128KB cache

: 128 req
ECM // MMU
DMA (128 ch)

shared
shared

INTC .

e .

IV
A

H
D

 n
te

rc
o
n
n
ec

t
i

(3
2

b
it
s)- Sys trl, Acc engines,

- Filters, Msg (16 bits)
- Seq: ARM968 w/mem
- w/ int ctrl, Mailbox

C .
IF

Shared L2 IF +
SL2: 256KB

“RTOS”
Cortex M3-

“SIMCOP
Ctrl”

Cortex M3-

L1 32KB
MMU/CTM

L2 64 KB RAM / 16 KB ROM

Emulation features

shared cache
and

- -

SL2L
4-

A
B

E
 n

te
rc

o
n
n
ec

t
(3

2
b
it
s)

i

- 3x M BSP
- 1x SLIMbus
- 1x M PDM
- x M ASP
- 1x DMIC
- 4x TIMER
- 1x WDT
- 1x AESS

C

C
1 C

GP
IMER

SIMCOP

ISP5

TCTRL and Parallel IF
IF andSerial : CSI2 CCP2

protocol engines

VID1,2,3
GFX,

Write back
pipelines

LCD
&
TV

overlays

SGX540
subsystem

2D 3D
graphics

ideo odecs

/

and
v c

Audio ngine
RAM: KB

e
96

L4_CFG

L4 CFG_

MIF4DE

LPDDR2

DMM (plitter
)

s
and Tiler

SL2 config

- General Core Control m

b

odule
- Spinlock
- Mail ox

C M 1 + profilerlock anager

3

1

4

3

L4_CFG
32 bits

- 4x HS-I2C
- 1x HDQ/1- ireW
- 1x MCBSP
- 4x MCSPI
- 4x UART (1x RDA)I

- 6x GPTIMER
- 5x GPIO
- 1x SLIMbus
- 3x HS-MMC

L4_PER
32 bits

29

3 To
HS-MMC 1
HS-MMC 2
DSS

8

8

To HSI,
System DMA,

USB OTG

USB H ,
USB,

Shared OCP WP,
USB TLL

HS ,
HS USB PHY,
HS ost
FS

HS

- D module

- Modem ICR (port 1)
- Modem ICR (port)

evice Core Control
- eFuse farm + FROM

2

1
To DSP subsystem

From PRM
(profiler port)

From CM1
(profiler port)

From ebugd subsystem

To EMU L3
instrumentation

MPU
Master 0

EMIF

L3 interconnect

Embedded
DMA

Face
Detect
(FDIF)

FD
core

To L3 Core
nstrumentation

-
i

1
To FDIF (face detect)

D
S
S
 n

te
rc

o
n
n
ec

t
i (3

2
b
it
s)

DSP_SS nterconnect
(128 bits)

i

PRM + profiler
1

R
D

 p
or

t

W
R

 p
or

t

1

- SAR R M (4KB 32 bit data)O -
1

ISS megacell

KEYBOARD
1

Cortex A9
CPU0

-

+Neon + VFPv3

HSI 2-port
USBHS

Host

EHCI /
OHCIHSR

HST

2-port

USB
TLL

HS

1-port

FS SBU

- DMA
- RFBI
- NTSC/PAL videoenc
- HDMI video enc
- MIPI DSI Ctrl/ Mem

x2

HS
IC

HS
IC

ELM

1

Device Wakeup Control module
1

MPU subsystem

3x SmartReflex

+Neon + VFPv3

Cortex A9
CPU

-
1

MPU
Master 1

12
8

bi
ts

12
8

bi
ts

12
8

bi
ts

D
M

M
 1

D
M

M
 2

32 bits

32 bits
32 bits 64 bits

32
bi

ts

128 bits 128 bits 32 bits 128 bits 32 bits

I
i

S
S
 n

te
rc

o
n
n
ec

t
(3

2
b
it
s)

I iSS nterconnect
(bits)128

64 bits 64 bits 64 bits 128 bits 64 bits

32 bits

32 bits

32 bits

32 bits 32 bits

L4_CFG
32 bits

L4_CFG
32 bits

32 bits

L4_CFG
32 bits

L4_CFG
32 bits

BTE

CBUFF

32 bits 32 bits 128 bits

L4_CFG
32 bits

L4_
32 bits

PER

HS
USB
PHY

L4_CFG
32 bits

Othermodules:
- CSreplicator
- CSTF
- PDLO

EMU Configuration
interconnect

32 bits

To
MPU_ss

CORE L3 instrumentation

Shared OCP WP

EMU L3
instrumentation DAP

CSTPIUCSETB

8KB mem

DRM

MIPI_STM

128x48
mem

X
T
R

IG

ICEPick
IEEE
1149.7
adapter

TAPs

ToCSTF

To EMU L3
instrumentation

From CM
(profiler port)

2From
IVA HD

ICEmelter

32 bits

P
er

fo
rm

an
ce

 M
on

ito
rin

g

MIF4DE

LPDDR2

C M 2 + profilerlock anager
1

To L3
instrumentation

CORE

MPU
Master

EMIF
1

L3
OCM_RAM

(56KB SRAM)

32 bits

Fig. 1. The OMAP4460 — A ‘Simple’ SoC (OMAP4460 TRM [21])

cache: once we go beyond that, we’re really in the Wild West and, as we demonstrate,
the path an address takes from the CPU core to its final destination can be extremely
complex (if it ever gets there at all)!

Addressing in a system is semantically far more complex than it first appears. Both
Linux and seL4 assume a per-core virtual address space translated, at page granular-
ity via a memory management unit (MMU), to a single global physical address space
containing all the random access memory (RAM) and memory-mapped devices in the
system. This model, found in many undergraduate textbooks, has been hopelessly inac-
curate for some time.

Figure 1 shows the manufacturer’s simplified block diagram for a 10-year-old mo-
bile phone SoC, the Texas Instruments OMAP4460. Already on this chip we can iden-
tify at least 13 distinct interconnects, implementing complex address remapping, and at
least 7 cores (not counting DMA-capable devices) each with a different view of physi-
cal addresses in the system. In addition, the SoC can be configured such that a memory
access enters the same interconnect twice, effectively creating a loop.

Correct OS operation requires software to configure all the address translation and
protection elements in this (or any other) platform correctly, and hence formal reasoning
about the system requires a model which captures the complexity of addressing. Such
a model does not fully exist, but the need is recognized even in the Linux community.
The state of the art is DeviceTree [8], essentially a binary file format encoding how a
booting OS can configure platform hardware in the absence of device discovery. How-
ever, DeviceTree’s lack of semantics and narrow focus prevent both reasoning about
correctness and runtime use beyond initialization.

As we have shown [1,3,11], systems of various architectures and sizes have no sin-
gle physical address space, which may have been an illusion since early on. Thus, those

systems are better modeled as a network of address spaces. We therefore introduced a
“decoding net” model and demonstrated how it captures a wide variety of complex mod-
ern hardware, from the OMAP SoC, to multi-socket Intel Xeon systems with peripheral
component interconnect (PCI)-connected accelerators containing general-purpose cores
(e.g. a Xeon Phi).

The contribution of this paper is our formal decoding-net model, mechanised in
Isabelle/HOL and expanded relative to our previously-published descriptions, particu-
larly in the treatment of possibly-non-terminating decoding loops. We show its utility in
seL4-style refinement proofs by modeling the MIPS4600 TLB [14] and demonstrating
that the imprecision of its specification prevents any proof of correct initialization.

2 Model

Our goals in formally specifying the addressing behavior of hardware include the highly
practical aim of more easily engineering code for a real OS (Barrelfish [5]) which we
are confident operates correctly on a diverse range of hardware platforms. Our model
(accessible on Github [2]) is therefore a compromise between the simplicity required to
provide meaningful abstractions of the system, and the detail needed to capture features
of interest and make the model usable in the OS at compile time and run time.

At the same time, the characteristics of the underlying formalism (here Higher-
Order Logic), and the kinds of reasoning efficiently supported by the existing tools
and libraries (Isabelle/HOL) also influence the choice of model. Specifically, we make
limited use of HOL’s relatively simple type system (a formalization in Coq would look
very different), but exploit Isabelle’s extensive automation for reasoning with relations
and flexible function definitions.

Our core abstraction is the qualified name: An address is a name, defined in the
context of some namespace, identified by a natural number. As we have previously
shown [3], this suffices to model a large number of interesting real-world examples.

In this view a processor’s page tables, for example, define a namespace n by map-
ping names (addresses) qualified by the identifier n into another address space n′, the
“physical” address of the processor. In general, a name may be mapped to any name in
any address space (even itself) or to no name at all. As addresses are discrete we also
label them with natural numbers, and the translation behavior of an address space is a
function:

translate : N× N→ {N× N}

mapping a fully-qualified name (n, a) (address a in address space n) to some set of
names {(n′, a′)} (address a′ in space n′). That translate returns a set, not just an
address, allows for nondeterminism and refinement e.g. the possible configurations of
a translation unit can be modeled as “any input may map to any output”, of which any
particular configuration is a refinement. We do not yet use this feature of the model.

This process should end somewhere: any address should (hopefully) eventually re-
fer to some device (e.g. RAM). To distinguish between this and the case where the
translation of an address is simply undefined, we add a per-address space accept set:

accept : N→ {N}

L3 Interconnect

M3 L2 Interconnect

M3 MIF

M3 L1 translation

M3 RAM M3 ROM

PCI address space

SMPT

Xeon Phi virtual address space

GDDR

System memory region

GDDR

BAR

Fig. 2. Existing Loops in Hardware. Xeon Phi left and OMAP 4460 on the right.

Address a ∈ accept n if a is accepted in address space n and thus address resolution
terminates in address space n. We deliberately allow an address space to have both a
non-empty accept set and non-empty translate sets to cover the behavior of e.g. a cache:
some addresses may hit in the cache (and thus be accepted locally), while others miss
and are passed through.

These two primitives define the entire semantics of the model: everything else is
derived from these. The combination implicitly defines a directed graph on qualified
names, where every well-defined translation path ends in an accepting set. We explicitly
construct the associated (one-step) relation as follows:

decodes_to = {((n, a), (n′, a′)). (n′, a′) ∈ translate (n, a)}

Likewise the set of all fully-qualified names accepted anywhere in the network:

accepted_names = {(n, a). a ∈ accept n}

Finally we define the net to be a function from nodeid to node:

net : N→ node

2.1 Views and Termination

One might think the model we have just described is overkill in generality for modeling
address spaces. To motivate it, we show some examples of the complexity inherent in
address resolution in modern hardware.

On the right of Figure 2 is a subgraph of the interconnect of the OMAP4460 from
Figure 1, showing that it is not a tree. In fact, it is not even acyclic: For example, there is
both an edge from the Cortex M3 cores (the ISS megacell) to the L3 interconnect, and
another from the L3 back to the M3. The system can be configured so that an address
issued by the M3 passes through its local address space twice before continuing to one
of the L4 interconnects. There’s no sensible reason to configure the system like this,
but we must be able to express the possibility, to verify that initialisation code doesn’t.

The left of Figure 2 shows a similar situation arising with a PCI-attached Intel Xeon
Phi accelerator. Both examples are from our previous work [3], in which much more
complex examples are modeled using the formalism presented here.

Thus the absence of true loops is a property we must formally prove from a descrip-
tion of the system, rather than an a priori assumption. Importantly, this proof obligation
is not manually appended to the model, but (as we will see) arises naturally when at-
tempting to define a functional representation of an address space.

The possibility of loops, and thus undefined translations, is captured by the general
decodes_to relation above. While faithful, this relational model is not particularly us-
able: for practical purposes we are more interested in deriving the complete view of the
system from a given processor: the eventual accepting set (if any) for each unqualified
name in the processor’s local name space.

This is expressible via the reflexive, transitive closure of the decoding relation1(R ‘S
is here the image of the set S under the relation R).

λ(n, a). accepted_names ∩ (decodes_to∗ ‘{(n, a)})

This is the set of names reachable in 0 or more steps from the root which are accepted
by the network. The view from a particular node (the local address space) is then simply
the curried function obtained by fixing a particular n.

The model so far is still not quite what we want: we’d like to express the resolu-
tion process as a function, preferably with an operational interpretation corresponding
(hopefully) meaningfully to the actual hardware behavior. For this we exploit the flex-
ibility of Isabelle’s function definition mechanism to separate the simple operational
definition of resolution from the more difficult proof of termination:

resolve (n, a) =

({(n, a)} ∩ accepted_names) ∪
⋃

resolve ‘(decodes_to ‘{(n, a)})

The resolution of a name is the set containing that name (if it’s accepted here), together
with the resolutions of all names reachable in one step via the decode relation. With this
carefully-chosen definition, the correspondence with the relational model is trivial:

assumes resolve_dom (n, a)

shows resolve (n, a) = accepted_names ∩ (decodes_to∗ ‘(n, a))

The resolve_dom predicate is produced by the Isabelle function definition mechanism
thanks to our incomplete definition of the resolve function. It asserts that the name n is
in the domain of the function resolve i.e. that the function terminates for this argument
(or equivalently that it lies in the reachable part of the recurrence relation). Establishing
a sufficient, and significantly a necessary, condition for the domain predicate comprises
the bulk of the proof effort.

1 Note that this defines only the decoding relation i.e. the set of (name,address) pairs. We
only need to show termination once we reformulate it as a recursive function: relations in
Isabelle/HOL need only be well-founded if used in a recursive definition (or equivalent).

The general termination proof for resolve (i.e. establishing the size of resolve_dom)
is roughly 500 lines of Isabelle, and consist of establishing a variant, or a well-formed
ranking of addresses:

wf_rank f (n, a) =

∀x, y. (x, y) ∈ decodes_to ∧ ((n, a), x) ∈ decodes_to∗ −→ f(y) < f(x)

From the existence of a well-formed ranking it follows by a straightforward induc-
tive argument that resolve terminates. A rather more complex argument shows that if
each decoding step produces at most finitely many translations of a name (trivially true
for any actual hardware), then the converse also holds i.e. we can find a well-formed
ranking of names for any terminating resolution. This establishes a precise equivalence
between relational and recursive-functional models:

∃f. wf_rank f (n, a) ←→ resolve_dom (n, a)

The argument proceeds by induction over the structure of the decode relation: For any
leaf node, finding a well-formed ranking is trivial; if a well-formed ranking exists for
all successors, then take the greatest rank assigned to any successor by any of these rank
functions (here is where the finite branching condition is required), add one, and assign
it to the current node.

2.2 Concrete Syntax, Prolog, and Sockeye

The goal of our work is to model real hardware and verify the algorithms used to con-
figure it in the context of a real operating system. We therefore define a simple concrete
syntax for expressing decoding nets:

nets =
{
N is nodes

∣∣∣ N..N are nodes
}

nodes =
[
accept [

{
blocks

}
]
] [

map [
{

maps

}
]
] [

over N
]

maps := blocks to N
[

at N
] {

, N
[

at N
]}

blocks :=N–N

The interpretation of a decoding net expressed in this syntax is given by the parse
function, in the accompanying theory files [2].

We use this syntax in the next section, in showing that important operations on the
abstract model can be expressed as simply syntactic translations. It is also the basis
for the (much more expressive) Sockeye language [18,20], now used for hardware de-
scription and configuration in Barrelfish. Programmers write descriptions of a hardware
platform, and the Sockeye compiler generates both HOL and a first-order representation
of the decode relation as Prolog assertions.

A set of Prolog inference rules is used to query or transform the model (for example
implementing the flattening described above), both offline (for example, to preinitialize
kernel page tables for bootstrap) and online (for device driver resource allocation) in the

Barrelfish OS. Representing the model in Prolog allows it to be dynamically populated
at run time in response to core and device discovery, while retaining a formal repre-
sentation. Establishing equivalence with the HOL model (i.e. verifying the Sockeye
compiler) should be straightforward, and is an anticipated extension of this work.

2.3 View-Equivalence and Refinement

To use the model we need efficient algorithms to manipulate it. For example, to preini-
tialize kernel page tables (as now occurs in Barrelfish) we need to know where in the
“physical” address space of a particular processor each device of interest appears. This
information is implicit in the decoding net model, but not easily accessible.

To build this view, we transform the network in a way that preserves the processor’s
views while constructing an explicit physical address space for each. We first split every
node such that it either accepts addresses (is a resource), or remaps them (is an address
space), but not both. Next, we flatten the address space nodes by mapping each input
address directly to all names at which it is accepted, i.e. construct the 1-step transitive
closure of the decode relation. Eventually, we terminate with a single address space
whose translate function maps directly to the resource of interest.

We say that two decoding networks are view-equivalent2, written (f, net) ∼S (g, net′)
if all observers (nodes) in S have the same view (i.e. the results of resolve are the same),
modulo renaming (f and g) of the accepting nodes. Given some c greater than the la-
bel of any extant node, define the accept and translate functions of the split net,
(accept′n and translate′n, for node n) as:

accept′n = ∅
accept′(n+c) = acceptn

translate′n a = {(n+ c, a) : a ∈ acceptn} ∪ translaten a

translate′(n+c) a = ∅

This new net is view-equivalent to the original, with names that were accepted at n now
accepted at n+ c, and no node both accepting and translating addresses:

(n 7→ n+ c, net) ∼S (∅, split(net)) (1)

Splitting on the concrete representation (splitC) is a simple syntactic operation:

n is accept A map M 7→ [n+ c is accept A, n is map M(n 7→ n+ c)]

Refinement (in fact equivalence) is expressed as the commutativity of the operations
(here split and splitC) with the lifting function (parse):

split (parse s) = parse (splitC s) (2)

Combining Equation 1 with Equation 2 we have the desired result, that the concrete
implementation preserves the equivalence of the nets constructed by parsing:

(n 7→ n+ c, parse s) ∼S (∅, parse (splitC s)) (3)
2 See definition view_eq in Equivalence.thy in the attached sources.

Together with the equivalent result for flattening, we can verify that physical address
spaces read directly from the transformed model are exactly those that we would have
found by traversing the original hardware-derived model for all addresses.

3 Refinement: Example of the MIPS R4600 TLB

Probably the most complex single translation element in a typical system is the proces-
sor’s TLB, used to implement the abstraction of Virtual Memory. Translation hardware,
such as an MMU, intercepts any load and store to a virtual address and maps it to a
physical address, or triggers an exception (page fault). The translation implemented by
the MMU is generally under the control of the operating system.

As a demonstration of our decoding net model’s ability to capture real hardware,
and to support reasoning about it, we present a model of the MIPS R4600 TLB [14]; a
well-understood and clearly documented, but still comparatively simple such device.

In this section, we show that the behavior of the TLB can be captured by the de-
coding net model, that we can use refinement to abstract the behavior of a correctly-
configured TLB, and prove that the manufacturer’s specification is too vague to allow
provably-correct initialization.

3.1 The TLB Model

Mask0 0Mask

063 12132425

EntryHi

63 0

R 0 VPN2 ASIDG 0

7811121361 40 3962

EntryLo0

63 0

0 PFN

123562930

0VDC

EntryLo1

63 0

0 PFN

123562930

0VDC

Fig. 3. A MIPS R4600 TLB entry with non-zero fields labelled.

The MIPS TLB is software-loaded: It does not walk page tables in memory for
itself, but rather generates a fault whenever a virtual address lookup fails, and relies
on the operating system to replace an existing entry with a mapping for the faulting
address.

Figure 3 gives the layout of a TLB entry. There are 48 entries, each of which maps
two adjacent virtual pages (identified by their virtual page number, or VPN) specified
in EntryHi, to the physical frames (identified by their physical frame number, or PFN)
specified by EntryLo0 and EntryLo1. The TLB (and our model) supports up to seven
pre-defined page sizes, but here we consider only the 4kiB case. Physical addresses
are 36 bit, while virtual addresses are 40 bit. Addresses are matched against EntryHi

i.e. on the VPN and address-space identifier (ASID). An entry with the global bit set
matches any ASID. We represent a TLB entry with the following Isabelle record type:

TLBEntryHi = (region : N, vpn2 : N, asid : N)
TLBEntryLo = (pfn : N, v : bool, d : bool, g : bool)

TLBEntry = (hi : TLBEntryHi, lo0 : TLBEntryLo, lo1 : TLBEntryLo)

The TLB consists of an indexed set of entries, and two state terms (wired and random)
which we will describe shortly. The capacity of the TLB is static, and is only included
here to support our refinement proof.

MIPSTLB = (wired : N, capacity : N, random : N, entries : N→ TLBEntry)

All TLB state changes are made by the OS via 4 special instructions:

tlbp TLB Probe performs an associative lookup using the contents of the EntryHi
register, and either returns the matching index or indicates a miss. The result of a
multiple match is undefined (this is important).

tlbr TLB Read returns any requested TLB entry.
tlbwi TLB Write Indexed updates the entry at a user-specified index.
tlbwr TLB Write Random updates the entry at the index specified by the Random reg-

ister, which is updated nondeterministically to some value in [wired, capacity).

In HOL these are state updates with the following types:

tlbp : TLBENTRYHI→ MIPSTLB→ {N}
tlbr : N→ MIPSTLB→ {TLBENTRY}
tlbwi : N→ TLBENTRY→ MIPSTLB→ {MIPSTLB}
tlbwr : TLBENTRY→ MIPSTLB→ {MIPSTLB}

The outcome of any of these operations may be undefined: Reading or writing an out-of-
bounds index and probes that match more than one entry are unpredictable; moreover
writing conflicting entries leaves the TLB in an unknown state. Both are modeled as
nondeterminism: All operations return a set of possible outcomes (UNIV, the universal
set being complete underspecification). For example, tlbwi returns UNIV for an out-
of-bounds index (i ≥ capacity tlb), and otherwise updates the specified entry3, the
singleton set indicating that the result is deterministic:

tlbwi i e tlb = if i < capacity tlb
then {tlb (entries := (entries tlb)(i := e))} else UNIV

A TLB random write is then the nondeterministic choice of some indexed write:

tlbwr e tlb =

(capacity tlb)−1⋃
i=wired tlb

tlbwi i e tlb

3 f(x := y) is Isabelle/HOL syntax for the function f updated at x with value y.

3.2 The Validity Invariant

The MIPS TLB famously permits the programmer to configure the TLB in an unsafe
manner, such that the future behavior of the processor is undefined. Indeed in early
versions of the chip it was possible to permanently damage the hardware in this way.
The source of the problem is in the virtual-address match process: this is implemented
using a parallel comparison against all 48 entries. The hardware to implement such
an associative lookup is very expensive, and moreover is on the critical path of any
memory access. It is therefore highly optimized, taking advantage of the assumption
that there will never be more than one match. Violating this assumption leads to two
buffers attempting to drive the same wire to different voltages and, eventually, to smoke.

This assumption is exposed as a requirement that the programmer never configure
the TLB such that two entries match the same virtual address. Note, the requirement
is not just that two entries never do actually match a load or store, but that they never
can4. Also note, that a match occurs independently of the value of the valid bit (V) and
therefore even invalid entries must not overlap. This will shortly become important.

We model the above condition with the following invariant on TLB state:

TLBValid tlb = wired tlb ≤ capacity tlb ∧(
∀i < capacity tlb. TLBEntryWellFormed (tlb i) ∧
TLBEntryConflictSet (entries (tlb i)) tlb ⊆ {i}

) (4)

This predicate states that all entries of the TLB are well formed and do not conflict
(overlap) with each other. An entry is well formed if its fields are within valid ranges.
We further define the TLBEntryConflictSet function:

TLBEntryConflictSet :: TLBEntry⇒ MIPSTLB⇒ {N}

This returns the indices of TLB entries that overlap the provided entry. The correctness
invariant is thus that either this set is empty, or contains just the entry under consid-
eration (e.g. the one being replaced). The TLB validity invariant is preserved by all 4
primitives e.g.

assumes TLBValid tlb and TLBENTRYWellFormed e

and i < capacity tlb and TLBEntryConflictSet e tlb ⊆ {i}
shows ∀t ∈ tlbwi i e tlb. TLBValid t

3.3 Invariant Violation at Power On

After reset (e.g. after power on), it is software’s responsibility to ensure that the TLB
validity invariant is established. However, the specification of the power-on state of the
TLB is sufficiently loose to render this impossible!

4 We can only speculate as to the writer’s intent here. One reason for such a restriction would
be speculative execution: The CPU might speculatively cause a TLB lookup on an address that
it never actually computes. The results would be discarded, but the damage would be done.

The MIPS R4600 manual [14] describes the reset state as follows: “The Wired regis-
ter is set to 0 upon system reset.” The random register is set to capacity−1. The state
of the TLB entries is undefined: “The TLB may be in a random state and must not be
accessed or referenced until initialized”. As the MIPS TLB is always on (the kernel is
provided with a special untranslated region of virtual addresses to solve the bootstrap-
ping problem), and a strict reading of the invariant requires that there are never two
matching entries for any address, even if invalid, the unpredictable initial state cannot
be guaranteed to satisfy the invariant. We prove this formally by constructing a TLB
state that satisfies the reset condition but not the invariant. A plausible initial state is
one where all bits are zero (the null_entry):

(wired = 0, random = 47, capacity = 48, entries = λ_. null_entry)

While this TLB does not actually translate anything as the valid bits of all entries are
zero, addresses from the first page in memory will match all entries of the TLB. The
straightforward reading of the manufacturer’s specification requires that such a situation
is impossible even if it doesn’t actually occur.

Of course, in practice, operating systems demonstrably do successfully initialize
MIPS processors. This indicates that the obvious solution is likely also the correct one:
as long as two entries never actually match i.e. no translatable access is issued before
the TLB is configured, there’s no actual problem. In practice the operating system will
execute in the non-translated physical window (KSEG0) until the TLB is configured.

This is an example of a specification bug, specifically an excessively cautious ab-
straction that inadvertently hides a correctness-critical detail. While this case is most
likely harmless (and this hardware obsolete), recent experience (such as the Meltdown
and Spectre attacks [16,17]) demonstrate that supposedly-invisible behavior hidden by
an abstraction can unexpectedly become correctness- or security-critical. Indeed, the
mechanism exploited by these attacks (speculative execution), could expose this in-
variant violation: even if no kernel code actually accesses a translatable address, the
processor is free to speculate such an access, thus triggering the failure.

3.4 What Does a Fully-Wired TLB Do?

The entries of the MIPS TLB can be wired (see Figure 4). The lower w entries are
protected from being overwritten by the random write operation (tlbwr). The manual
states that "Wired entries are non-replaceable entries, which cannot be overwritten by
a TLB write random operation." The number of wired entries w can be configured.

The random write operation uses the random register to select the entry to be over-
written. This register is initialized to capacity− 1 at reset and is decremented when-
ever the processor retires an instruction, skipping entries w − 1 down to 0. As its reset
value is capacity − 1, the random write operation will always succeed regardless of
the current value of value w. We can express the bounds as:

RandomRange tlb = {x. wired tlb ≤ x ∧ x < capacity tlb}

This definition is problematic when we wire all entries of the TLB i.e. by setting w
to capacity. Note, hardware does not prevent wiring more entries than the capacity.

Range of Random entries

Range of Wired Entries

TLB

0 w-1 w 471

Fig. 4. Wired TLB Entries

The manual does not mention this case at all. Assuming that w = capacity we obtain
RandomRange tlb = {x. capacity tlb ≤ x∧x < capacity tlb} = {}. This suggests,
that no entries will be replaced randomly as intended. However, we know that upon reset
the random register is set to capacity − 1 which is not in the (empty) RandomRange
set. This contradicts the specification of either the semantics of the wired entries or the
random write instruction. We therefore express the random range as follows:

RandomRange tlb = {x. wired tlb ≤ x ∧ x < capacity tlb} ∪ {capacity tlb− 1}

3.5 The TLB Refines a Decoding Net

The preceding specification bugs notwithstanding, we can nevertheless use the TLB
model to do useful work. In the remainder of this section we first show that with an
appropriate lifting function, our operational model of the TLB refines a decoding-net
model of a translate-only node, such that the tlbwi operation corresponds to simply up-
dating the appropriate translation. Finally, in section 3.6 through section 3.9 we model
the action of TLB refill handler and show that, combined with a valid page table and the
operational TLB model, that its action is indistinguishable (again under decoding-net
semantics) from that of a TLB large enough to hold all translation entries at once (i.e.
no TLB miss exceptions).

We lift a single TLB entry to a pair of address-range mappings as follows:

EntryToMap : nodeid⇒ TLBENTRY⇒ addr⇒ {name}
EntryToMap n e va =

(if EntryIsValid0 e ∧ va ∈ EntryExtendedRange0 e

then {(n, EntryPA0 e+ (va mod VASize)− EntryMinVA0 e)} else {}) ∪
(if EntryIsValid1 e ∧ va ∈ EntryExtendedRange1 e

then {(n, EntryPA1 e+ (va mod VASize)− EntryMinVA1 e)} else {})

The EntryExtendedRange(0,1) functions consider the virtual address, the address-
space identifier and the global bit, by extending the virtual address with the ASID bits
such that the extended virtual address space contains all virtual addresses for ASID 0,
followed by those for ASID 1, and so forth.

The TLB’s representation is then the union of these translations:

ConvertToNode n tlb =(
accept = {}, translate = λa.

⋃
EntryToMap n (entries tlb i) a

)
The abstract equivalent of tlbwi is the replace_entry function, which replaces

entry e1 with e2 by updating the translation as follows:

translate n a 7→ (translate n a−EntryToMap n e1 a) ∪ EntryToMap n e2 a

The following lemma shows the equivalence of the tlbwi instruction and the TLB
indexed write (replace_entry) function, i.e. that commuting with the lifting function
maps one to the other:

assumes i < capacity tlb and TLBValid tlb and TLBEntryWriteable i e tlb

shows (ConvertToNode n) ′(tlbwi i e tlb) =

replace_entry n (entries tlb i) e (ConvertToNode n tlb)

3.6 Modeling TLB Lookups and Exceptions

An MMU provides the illusion of a large virtual address space, using a small TLB, by
loading entries on demand from a large in-memory translation table. On the MIPS, this
is handled in software, according to the exception flowchart in Figure 4-19 of the MIPS
manual [14]. The following three exceptions are defined:

TLB Refill No entry matched the given virtual address.
TLB Invalid An entry matched, but was invalid.
TLB Modified Access violation e.g. a write to a read-only page.

Match Valid Entry writable / Memory write VPN even Result
No * * * TLB Refill Exception
Yes No * * TLB Invalid Exception
Yes No No and memory write * TLB Modified Exception
Yes Yes Yes or memory read Yes Translate using EntryLo0
Yes Yes Yes or memory read No Translate using EntryLo1

Table 1. The outcome of the translate function.

The possible outcomes of a TLB lookup are summarized in Table 1, and modeled
(for a particular entry) in our nondeterministic operational style as follows:

TLBENTRY_translate e as vpn =

if EntryMatchVPNASID vpn as e then
if even vpn ∧ EntryIsValid0 e

then {(pfn (lo0 e)) + (vpn− EntryMin4KVPN e)}
else if odd vpn ∧ EntryIsValid1 e

then {(pfn (lo1 e)) + (vpn− EntryMin4KVPN1 e)} else {}
else {}

Again exploiting nondeterminism, we define MIPSTLB_translate as follows:

MIPSTLB_translate tlb vpn as =⋃
i<capacity tlb

TLBENTRY_translate ((entries tlb) i) as vpn

The TLB invariant (Equation 4) implies that at most one entry will match, and thus the
union is trivial.

3.7 Adding a Page Table

With a software-loaded TLB, the OS programmer is free to select any data structure for
the page tables. The simplest, and a very common, choice is an array of TLBEntryLo
values, indexed by address space and virtual page number:

MIPSPT : N → N → TLBENTRYLO

The replacement handler must then simply load the entry corresponding to the faulting
address (if any) and restart the faulting process. In order to guarantee that the TLB
invariant is maintained, we show that the following invariant holds of the page table,
which simply applies the invariant to all elements of the in-memory representation:

assumes MIPSPT_valid pt and ASIDValid as and vpn < MIPSPT_EntriesMax

shows TLBENTRYWellFormed (MIPSPT_mk_tlbentry pt as vpn)

3.8 Modeling Replacement Handlers

Combining the page table representation above with the TLB, we can model a replace-
ment handler that “caches” translations from the page table in the TLB:

MipsTLBPT =
(
tlb : MIPSTLB, pte : MIPSPT

)

The replacement handler writes entries constructed from the page table into the TLB.
The TLB should thus always be an “instance” of (hold a subset of entries from) the
page table:

MipsTLBPT_is_instancemt = ∀i < capacity (tlbmt).

entries (tlbmt) i = MIPSPT_mk_tlbentry (ptemt)

(asid (hi (entries (tlbmt) i)))

(vpn2 (hi (entries (tlbmt) i)))

This predicate ensures there are no other entries in the TLB than those constructed from
the page table—a property we will use later when we show equivalence to a large TLB.

The replacement handler can either replace an entry deterministically by choosing
the index as a function of the entry’s VPN:

MIPSTLBIndex tlb entry = (vpn2 (hi entry))mod (capacity tlb)

or make use of the nondeterministic random write function. The deterministic update
function implements a direct mapped replacement policy i.e. an entry can only ever be
present in a well defined slot which simplifies reasoning about the TLB invariant.

However, this placement policy is not applicable in general e.g. when the OS wants
to divide the entries into wired and random (section 3.4) or in the presence of hardware
table walkers and associative TLBs that non-deterministically replace an entry. Hence,
the location of the entry in the TLB is no longer fixed.

In the non-deterministic model of the replacement handler, we make sure that we
only ever change the state of the TLB when a translation attempt would trigger a refill
exception:

MipsTLBPT_faultmtlb as vpn =

if MIPSTLB_try_translate (tlbmtlb) as vpn = EXNREFILL

then MipsTLBPT_update_tlbmtlb as vpn else {mtlb}

Therefore, when we construct the new entry from the page table and update the TLB
by replacing an existing entry with the new one, we are guaranteed not to cause and
conflicts. Hence, we prove that MipsTLBPT_fault preserves the TLB invariance:

assumes MipsTLBPT_validmpt and ASIDValid as

and vpn < MIPSPT_EntriesMax

shows ∀m ∈ MipsTLBPT_faultmpt as vpn. MipsTLBPT_validm

Note, we use a stricter definition of validity in this case requiring also the is_instance
predicate and that the page tables are well formed.

MipsTLBPT_validmt =MIPSPT_valid (ptemt) ∧ TLBValid (tlbmt)

∧ MipsTLBPT_is_instancemt

3.9 Equivalence to Infinitely Large TLB
The final result regarding the TLB is to show that, together with the refill handler, it
implements the expected abstraction: a single decoding-net node, that maps the virtual
address space to the physical. We do this by showing that the TLB plus refill handler is
equivalent, in the decoding-net semantics, to a hypothetical giant TLB, large enough to
hold all mappings at once, and that therefore never faults.

We construct the large TLB by pre-loading all entries from the page table, according
to our “extended virtual address” scheme, giving a unique, deterministic location for
each entry:

MipsTLBLarge_create pt =(
capacity = MaxEntries, wired = MaxEntries,

entries = λn. MIPSPT_mk_tlbentry pt (idx2asid n) (idx2vpn n)
)

We first define a translate function TLB ⇒ ASID ⇒ V PN ⇒ PFN for both,
the large TLB and the TLB with replacement handler, and we show that the two are
equivalent for any sensible VPN and ASID:

assumes vpn < MIPSPT_EntriesMax and as < ASIDMax

and capacity (tlbmpt) > 0 and MipsTLBPT_validmpt

shows MipsTLBPT_translatempt as vpn =

MIPSTLB_translate (MipsTLBLarge_create(ptempt)) as vpn

(5)

We use the translate functions and the equivalence result above when lifting the large
TLB and the TLB with replacement handler to the decoding net node. Here we show
the variant for the real TLB:

MipsTLBPT_to_node nid mpt =(
accept = {}, translate = (λa.(if AddrValid a then

(
⋃
x ∈ (MipsTLBPT_translatempt (addr2asid a)(addr2vpn a)).

{(nid, pfn2addr x a)}) else {}))
)

The accept set is empty. The node’s translate function checks whether the address falls
within defined range (AddrValid) and then either return an empty set or the result of the
TLB’s translate function. Note, we need to convert between addresses and VPN/ASID
and PFN.

Lastly, we prove the equivalence of the lifting functions and their result when ap-
plied to the large TLB and the TLB with replacement handler respectively:

assumes capacity (tlbmpt) > 0 and MipsTLBPT_validmpt

shows MipsTLBPT_to_node nid mpt =
MIPSLARGE_to_node nid (MipsTLBLarge_create (ptempt))

Recall, we have shown that the translate function of the two TLB’s have identical be-
havior (Equation 5) if the large TLB was pre-populated with the same page tables.
Therefore, applying the lifting functions produces equivalent nodes in decoding net se-
mantics.

4 Conclusion

In this paper, we have demonstrated the use of Isabelle/HOL to formally model and
reason about the increasingly complex process of address resolution and mapping in
modern processors. The traditional model of a single virtual address space, mapped
onto a global physical address space has been a gross oversimplification for a long
time, and this is becoming more and more visible.

Our decoding-net model, and the Sockeye language that we have developed from it,
present an semantically rigorous and formally-verified alternative to Device Trees. In
our prior work, we have demonstrated that this model can be applied to a wide range
of very complex real hardware, and in this paper we further demonstrate its application
to modelling the MIPS TLB. That we were able to prove that this correctly implements
the virtual-memory abstraction shows not just that this particular hardware is indeed
correct, but that our model is tractable for such proofs. That we discovered a number
of specification bugs demonstrates clearly the benefit of a rigorous formal proof, and is
further evidence in favor of the formal specification of the semantics of hardware.

The Sockeye language is already in use in the Barrelfish operating system, and we
anticipate verifying the Sockeye compiler, in particular that the Prolog assertions gen-
erated are equivalent to the HOL model. Further, the model as it stands is principally a
static one: expressing the configuration space of the system in a more systematic manner
than simply allowing general functions (for example to model region-based remapping
units, as used in PCI), and reasoning about the dynamic behavior of requests as transla-
tions are updated (for example that a series of updates to different translation units never
leaves the system in an intermediate state that violates invariants) is an exciting future
direction that we intend to explore. Likewise modelling request properties (read, write,
cacheable, etc.), and their interaction with existing weak memory models, presents a
challenge.

The ultimate prize is to model the memory system in sufficient detail to be able
to specify the behavior of a system including partly-coherent caches (such as ARM)
and table-walking MMUs that themselves load page table entries via the cache and/or
second-level translations (as in two-level paging for virtualization). This goal is still
a long way off, but the increasing quality and availability of formal hardware models
leaves us hope that it is indeed attainable.

References

1. R. Achermann. Message Passing and Bulk Transport on Heterogenous Multiprocessors.
Master’s thesis, Department of Computer Science, ETH Zurich, Switzerland., 2017.

2. R. Achermann, D. Cock, and L. Humebl. Hardware Models in Isabelle/HOL. Online.
https://github.com/BarrelfishOS/Isabelle-hardware-models, January 2018.

3. R. Achermann, L. Humbel, D. Cock, and T. Roscoe. Formalizing Memory Accesses and
Interrupts. In Proceedings of the 2nd Workshop on Models for Formal Analysis of Real
Systems, MARS 2017, pages 66–116, 2017.

4. J. Alglave. A Formal Hierarchy of Weak Memory Models. Form. Methods Syst. Des.,
41(2):178–210, Oct. 2012.

5. The Barrelfish Operating System. Online. https://www.barrelfish.org.

https://github.com/BarrelfishOS/Isabelle-hardware-models
https://www.barrelfish.org

6. S. Beyer, , C. Jacobi, D. Kröning, D. Leinenbach, and W. J. Paul. Putting it all together —
Formal verification of the VAMP. Int. J. Softw. Tools Technol. Transfer, 8(4):411–430, Aug
2006.

7. M. K. Bishop C. Brock, Warren A. Hunt. The FM9001 Microprocessor Proof. Technical
Report 86, Computational Logic, Inc., 1994.

8. devicetree.org. Devicetree Specification, May 2016. Release 0.1, Online. http://www.
devicetree.org/specifications-pdf.

9. S. Flur, K. E. Gray, C. Pulte, S. Sarkar, A. Sezgin, L. Maranget, W. Deacon, and P. Sewell.
Modelling the ARMv8 Architecture, Operationally: Concurrency and ISA. In Proceedings
of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL’16, pages 608–621, St. Petersburg, FL, USA, 2016. ACM.

10. A. Fox and M. Myreen. A Trustworthy Monadic Formalization of the ARMv7 Instruction
Set Architecture. In M. Kaufmann and L. Paulson, editors, ITP, pages 243–258, Berlin,
Heidelberg, 2010. Springer.

11. S. Gerber, G. Zellweger, R. Achermann, K. Kourtis, T. Roscoe, and D. Milojicic. Not Your
Parents’ Physical Address Space. In Proceedings of the 15th USENIX Conference on Hot
Topics in Operating Systems, HOTOS’15, pages 16–16, 2015.

12. R. Gu, Z. Shao, H. Chen, X. Wu, J. Kim, V. Sjöberg, and D. Costanzo. CertiKOS: An
Extensible Architecture for Building Certified Concurrent OS Kernels. In Proceedings of
the 12th USENIX Conference on Operating Systems Design and Implementation, OSDI’16,
pages 653–669, Savannah, GA, USA, 2016. USENIX Association.

13. W. A. Hunt, M. Kaufmann, J. S. Moore, and A. Slobodova. Industrial hardware and software
verification with ACL2. Phil. Trans. R. Soc. A, 375(2104), 2017.

14. Integrated Device Technology, Inc. IDT79R4600 TM and IDT79R4700 TM RISC Processor
Hardware User’s Manual, revision 2.0 edition, April 1995.

15. G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe, K. En-
gelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood. seL4: Formal Verifi-
cation of an OS Kernel. In Proceedings of the ACM SIGOPS 22Nd Symposium on Operating
Systems Principles, SOSP ’09, pages 207–220, Big Sky, Montana, USA, 2009. ACM.

16. P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher,
M. Schwarz, and Y. Yarom. Spectre Attacks: Exploiting Speculative Execution. ArXiv e-
prints, Jan. 2018.

17. M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard, P. Kocher, D. Genkin,
Y. Yarom, and M. Hamburg. Meltdown. ArXiv e-prints, Jan. 2018.

18. T. B. Project. Sockeye in Barrelfish.
19. A. Reid. Trustworthy Specifications of ARM V8-A and V8-M System Level Architecture.

In FMCAD’16, pages 161–168, Austin, TX, 2016. FMCAD Inc.
20. D. Schwyn. Hardware Configuration With Dynamically-Queried Formal Models. Master’s

thesis, Department of Computer Science, ETH Zurich, Switzerland., 2017.
21. Texas Instruments. OMAP44xx Multimedia Device Technical Reference Manual, April 2014.

Version AB, www.ti.com/lit/ug/swpu235ab/swpu235ab.pdf.

http://www.devicetree.org/specifications-pdf
http://www.devicetree.org/specifications-pdf
www.ti.com/lit/ug/swpu235ab/swpu235ab.pdf

	Physical Addressing on Real Hardware in Isabelle/HOL

